
Final Conference of the NutriAging project

Insights into chromosmal instability and vitamin D supplementation in older adults

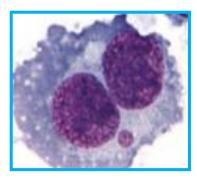
Presentation by Agnes Draxler

Wagner Working group Department of Nutritional Sciences, Vienna 20/21 September 2022, in Bratislava

Seite 1

What to be expected in this talk...

Introduction into aging and its relevance

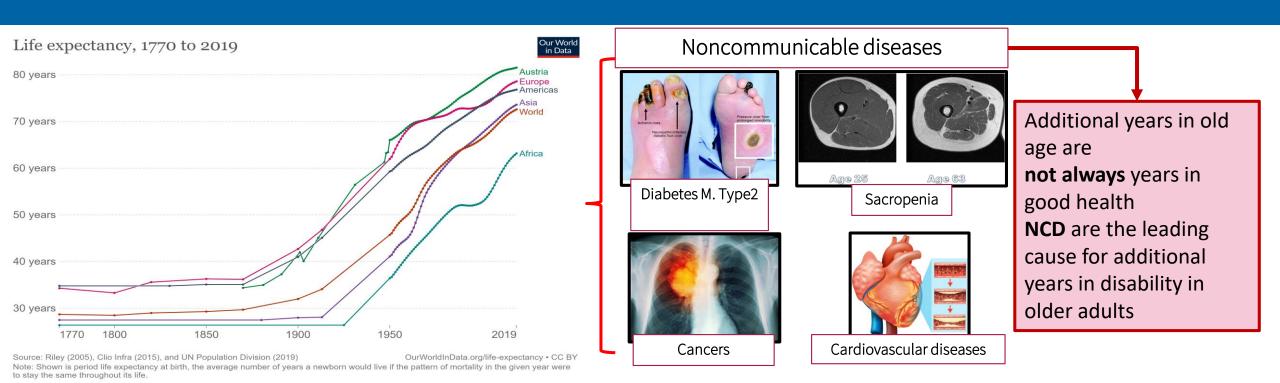

The meaning of chromosomal stability

Micronuclei frequency as a potential biomarker for...

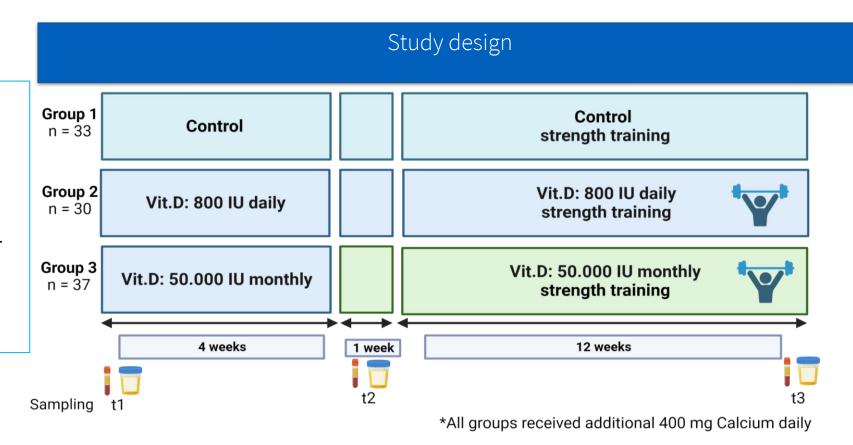
Methodology – The CBMN assay

Results

Summary and Conclusions about findings



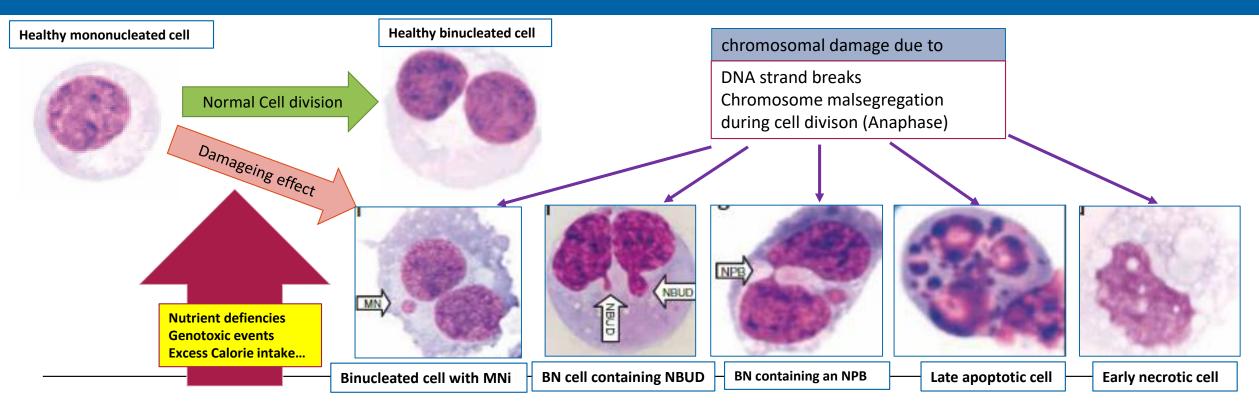
Introduction



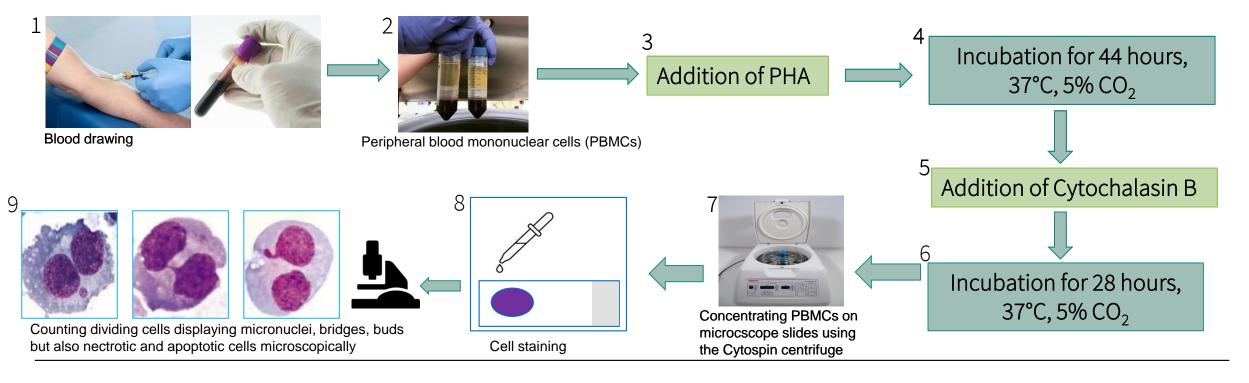
100 participants

aged between 65 and 85 years

- completely healthy communitydwelling pensioners
- physically inactive (no sports prior to the intervention)
- divided into 3 groups

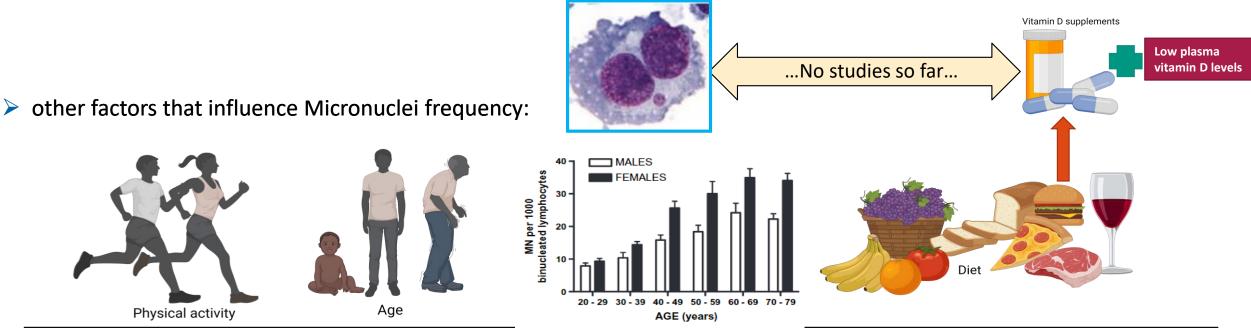


Parameters for chromosomal stability



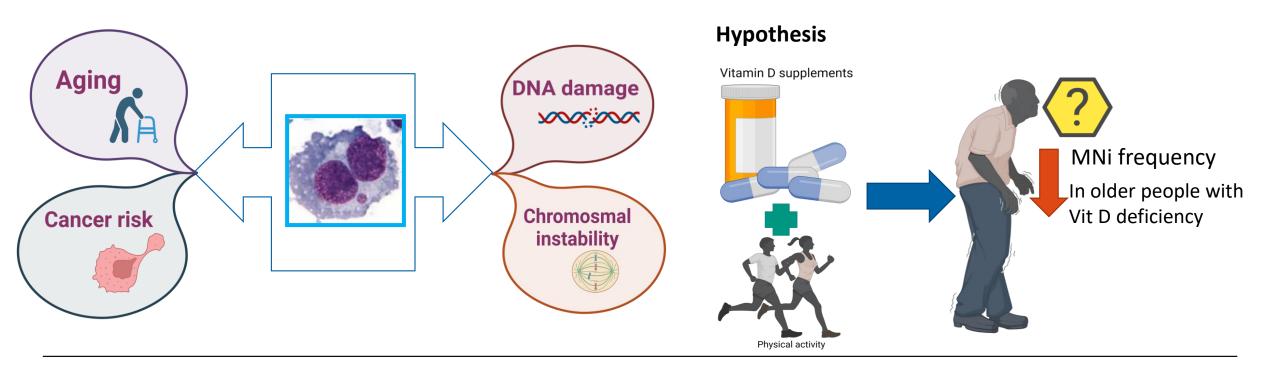
Main methodology

Cytokinesis-block micronucleus (CBMN) assay

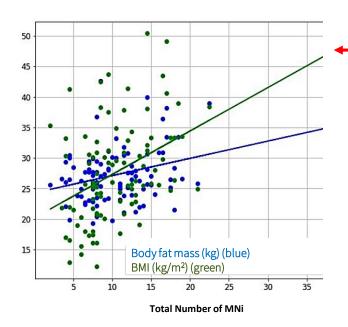


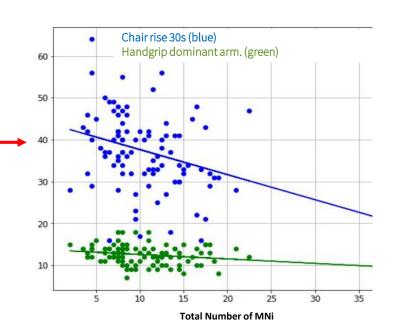
Vitamin D deficiency and low physical inactivity

considered as driving factors for genomic instability, expressed as the frequency of micronuclei



Micronuclei frequency is a potential biomarker for





Results: baseline correlations

related biomarker at baseline		CLOU	
	Total number of MNi		
Parameters	(per 1000 BN	/	
	r	p-value	
Body composition			
BMI (kg/m ²)	0.311**	0.002	
Waist to Hip Ratio	205*	0.044	
Muscle mass[kg]	-0.221*	0.012	
Body fat [kg]	0.372**	< 0.001	
Body fat [%]	0.433**	< 0.001	
Functional parameters			
Armcurl dominant arm	-0.242*	0.012	
30s	-0.242	0.012	
Timed up and go [s]	0.245*	0.015	
6-minute-walking test	-0.262**	0.010	
[m]	-0.262**	0.010	
Chair-rise 30s	-0.256*	0.019	
Handgrip arm dominant	-0.282**	0.005	
Blood parameters			
Erythrocytes [T/l]	-0.264**	0.009	
Haemoglobin [g/dl]	345**	0.001	
Haematocrit [%]	-0.309**	0.002	
CRP [mg/l]	0.125	0.196	
hs Troponin [ng/L]	-0.196	0.054	
Creatinin [mg/dl]	-0.215*	0.034	

** The correlation is significant at the level of 0.01 (2-sided).

14.10.2022 Agnes Draxler

Baseline parameters: males vs. females

Parameter	All	Men	Women		
Subjects (n)	100 Mean \pm SD	67 Mean \pm SD	33 Mean ± SD	p-value	
Age (years) Vitamin D serum level (ng/ml) CBMN parameter	70.63±4.54 22.83±5.52	70.33±4.47 22.42±5.82	71.24±4.68 23.66±4.82	0.397 0.174	
Cells with MNi (per 1000 BN cells)	10.71±5.25	9.18±3.91	13.68±6.22	<0.001	Females displayed higher levels
Total number of MNi (per 1000 BN cells)	11.86±5.92	10.29±4.58	14.89±7.03	<0.001	of Mni at baseline than males
Nuclear buds Nucleoplasmic bridges Apoptotic cells Necrotic cells	2.62±1.67 1.04±1.08 6.06±5.52 3.85±2.89	2.6±1.71 1.05±1.02 6.88±5.94 4±2.97	2.67±1.62 1±1.21 4.47±4.23 3.55±2.75	0.713 0.55 < 0.001 0.388	which is consistent with other studies
NDI	1.7±0.23	1.75±0.25	1.62 ± 0.12	0.002	

Data are presented as means±standard deviation, p-values are calculated using Mann-Whitney U test and chi-square for measuring gender differences, significant differences are highlighted with bold numbers.

Baseline: Median Mni frequency

Parameter	All	f for the total micronucleus freq < Median of total MNi	> Median of total MNi		
Subjects	n = 97	n = 48	n = 49		
	Mean±SD	$Mean \pm SD$	$Mean \pm SD$	p-value	
CBMN parameter					
Cells with MNi (per 1000 BN cells)	10.71±5.25	6.97±1.84	14.38±4.90	< 0.001	
Total number of MNi (per 1000 BN cells)	11.86±5.92	7.60±1.84	16.02±5.56	< 0.001	
Nuclear buds	2.62±1.67	2.35±1.69	2.89±1.63	0.077	
Nucleoplasmic bridges	1.04±1.08	0.94±1.03	1.13±1.13	0.279	
Apoptotic cells	6.06±5.52	6.47±6.48	5.65±4.41	0.862	
Necrotic cells	3.85±2.89	3.89±2.97	3.81±2.83	0.916	
NDI	1.70±0.23	1.70±0.19	1.71±0.26	0.931	

Data are presented as mean \pm standard deviation. P-values (p < 0.05) were calculated using the Man-Whitney U test based on the median at 10. P-value = 0.05.

Subjects that showed lower Mni levels than the Mni Median (= total Mni of 10) displayed also:

- Iower body fat (kg)
- Iower BMI
- Performed better in functional testings including
 - Arm-curl test
 - Chair-rise test
 - Hand-grip test

Intervention effects on MNi

Table 4: Development of CBMN parameter and important blood biomarker after vitamin D intervention and resistance training (n=67)

Parameter	Group	Mean±SD			p-value	p-value		
		Tl	T2	T3	Friedman	T1-T2	T1 -T3	T2-T3
CBMN parameters								
Cells with MNi	CON	10.41±3.94	10.27±6.50	12.82±6.23	< 0.001	0.383	0.027	0.008
(per 1000 BN cells)	Vit.D daily	11.43±8,18	9.02±6.10	11.60±4.15	0.041	0.11	0.313	0.039
	Vit.D monthly	10.60±3,89	9.02±3.54	14.00±6.76	< 0.001	0.049	0.001	0.001
Total number of MNi	CON	11.36±4.33	11.25±7.4	14.45±7.22	0.002	0.413	0.025	0.005
(per 1000 BN cells)	Vit.D daily	12.48±9.16	10.02±6.76	13.33±5.28	0.03	0.217	0.179	0.047
	Vit.D monthly	11.77±4.51	10.2/±4.75	16.06±7.81	< 0.001	0.059	< 0.001	0.001
Nuclear buds	CON	2.75±1.35	3.5±1.79	2.93±2.36	0.102	0.054	0.919	0.143
Vi	Vit.D daily	2.81±2.09	3.76±2.25	2.67±1.93	0.047	0.098	0.793	0.055
	Vit.D monthly	2.46±1.44	3.92±2.76	2.58±1.32	0.033	0.014	1,000	0.014
Nucleoplasmic	CON	1.02 ± 0.91	0.77±0.75	0.73±0.86	0.343	0.463	0.269	0.715
bridges	Vit.D daily	1.31±1.44	0.43±0.43	1.00±0.69	0.013	0.009	0.344	0.004
	Vit.D monthly	0.77±0.92	0.88±0.80	0.54±0.72	0.107	0.734	0.228	0.05
Apoptotic cells	CON	5.20±4.23	6.18±4.62	8.11±6.37	0.063	0.154	0.048	0.071
	Vit.D daily	5.40±4.24	9.67±8.84	7.48±5.02	0.089	0.117	0.013	0.525
	Vit.D monthly	7.38±6.97	6.98±7.17	7.98±3.97	0.314	0.943	0.338	0.223
Vit.l	CON	3.70±2.70	4.16±2.25	4.89±3.98	0.825	0.464	0.286	0.564
	Vit.D daily	3.64±2.94	5.26±4.51	5.71±4.05	0.088	0.172	0.01	0.588
	Vit.D monthly	5.00±3.60	3.71±2.83	3.19±2.37	0.153	0.143	0.048	0.519
Nuclear Division	CON	1.70±0.36	1.66±0.17	1.77±0.27	0.861	0.627	0.445	0.101
Index	Vit.D daily	1.72±0.10	1.70±0.38	1.78±0.34	0.827	0.848	0.375	0.339
	Vit.D monthly	1.69±0.20	1.64±0.14	1.68±0.19	0.325	0.317	0.458	0.361

Blood parameters after intervention								
Vitamin D serum level	CON	11.36±4.33	11.25±7.4	14.45±7.22	0.002	0.413	0.025	0.005
(ng/ml)	Vit.D daily	20.81±4.82	21.19±5.13	23.64±8.29	0.97	0.685	0.088	0.123
	Vit.D monthly	23.93±6.00	24.36±6.63	28.02±7.61	0.01	0.444	0.023	0.025

Data are presented as mean \pm standard deviation. P-values (p < 0.05) were calculated using the Man-Whitney U test based on the median at the value 10 . P-value = 0.005 (Bonferoni corrected)

Increase of MNi frequency in all study groups at the end of intervention

Summary and Conclusions

- Micronucleus frequency correlated positively with anthropometric parameters such as BMI (R = 0.311*) and body fat mass (R = 0.372*) at baseline.
- Additionally, we observed negative correlations with various functional parameters with Mni frequency, such as the 6-minute walking test (R = -0.262*).

Intervention effects:

- In older adults with low plasma vitamin D levels, we could not detect significant intervention effects due to different vitamin D supplementation dosages (800 IU daily vs. 50.000 IU monthly vs. control) when it comes to chromosomal instability.
- > Interestingly, strength training slightly increased the MNi frequency in all groups.

Some pictures of measurements and the training

This picture shows study participants undertaking their supervised resistance exercise twice per week.

14.10.2022 Agnes Draxler

References

1 - Diabetic foot ulcer pictures 1 | Symptoms and pictures (symptomspictures.com) acessed 06.09.2022

- 2-Petition · Stop Smoking In Canada · Change.org accessed 06.09.2022
- 3- Heart Disease (Cardiovascular) Best Cardiogist in Brooklyn (cardiologistbrooklyn.com) accessed 06.09.2022
- 4- Life Expectancy Our World in Data accessed 06.09.2022

5. Bonassi S, El-Zein R, Bolognesi C, Fenech M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: Evidence from human studies. *Mutagenesis*. 2011;26(1):93-100. doi:10.1093/mutage/geq075

6. Franzke B, Schwingshackl L, Wagner KH. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity - A systematic review and meta-analysis. *Mutat Res Rev Mutat Res.* 2020;786. doi:10.1016/j.mrrev.2020.108343

7. Wagner KH, Schwingshackl L, Draxler A, Franzke B. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency – A systematic review and meta-analysis. *Mutat Res Rev Mutat Res.* 2021;787. doi:10.1016/j.mrrev.2021.108367

8. Bonassi S, Znaor A, Ceppi M, et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis

9. Franzke B, Halper B, Hofmann M, et al. The effect of six months of elastic band resistance training, nutritional supplementation or cognitive training on chromosomal damage in institutionalized elderly. *Exp Gerontol.* 2015;65:16-22. doi:10.1016/j.exger.2015.03.001

10. Savoie MB, Paciorek A, Zhang L, et al. Vitamin D Levels in Patients with Colorectal Cancer Before and After Treatment Initiation. J Gastrointest Cancer. 2019;50(4):769-779. doi:10.1007/s12029-018-0147-7

11. Aschauer R, Unterberger S, Zöhrer PA, et al. Effects of vitamin D3 supplementation and resistance training on 25-hydroxyvitamin d status and functional performance of older adults: A randomized placebocontrolled trial. *Nutrients*. 2022;14(1). doi:10.3390/nu14010086

